
PRINCIPLES OF ANALYSIS
LECTURE 8 - SEQUENCES

PAUL L. BAILEY

1. Review

We described how the natural numbers can be build from axioms of set theory;
how to construct the integers from the natural numbers, and how to construct
the rationals from the integers.

We developed the real numbers as the set of cuts in the rational number
line. This set supports addition, multiplication, and an ordering satisfying these
properties:

(F1) (a + b) + c = a + (b + c);
(F2) a + 0 = a;
(F3) a + (−a) = 0;
(F4) a + b = b + a;
(F5) (ab)c = a(bc);
(F6) a · 1 = a;
(F7) a · a−1 = 1 for a 6= 0;
(F8) ab = ba;
(F9) (a + b)c = ac + bc;
(O1) a ≤ a;
(O2) a ≤ b and b ≤ a implies a = b;
(O3) a ≤ b and b ≤ c implies a ≤ c;
(O4) a ≤ b or b ≤ a;
(O5) a ≤ b implies a + c ≤ b + c;
(O6) a ≤ b implies ac ≤ bc for c ≥ 0.

(CM) every set of real numbers bounded above has a least upper bound.
Property (CM) is equivalent to the lack of gaps in the real number line; this
lack of gaps was proved using the Cantor-Dedekind Theorem. The Schroder-
Bernstein theorem helped show that there is a linear order on the cardinal num-
bers. It is the lack of gaps which insures that base β expansions produce real
numbers, which leads to the proof the |Q| < |R|.

Exercise 1. Recommended practice exercises from the book:
Chapter 0 exercises 10,13,14,21,32,36,38,40
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2. Triangle Inequality

Let x ∈ R, and define the absolute value of x, denoted by |x|, by

|x| =

{
x if x ≥ 0;
−x if x < 0.

Clearly −|x| ≤ x ≤ |x| for all x ∈ R. We think of this as the distance between x
and 0. Moreover, we think of |x− a| as the distance between x and another real
number a.

Proposition 1. Let a, b ∈ R. If a ≤ b, then −b ≤ −a.

Proof. This uses property (O5). Take a ≤ b and add −b to both sides to get
a− b ≤ 0. Now add −a to both sides to get −b ≤ −a. �

Proposition 2 (Triangle Inequality). Let a, b ∈ R. Then |a + b| ≤ |a|+ |b|.

Proof. We have −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. Repeated application of
property (O6) yield

−(|a|+ |b|) ≤ a + b ≤ |a|+ |b|.
Multiply both sides of the left inequality by −1 to obtain −(a + b) ≤ |a| + |b|.
Now |a + b| is either a + b or −(a + b), and in either case, we see that |a|+ |b| is
greater than it. �
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3. Sequences

Let A be a set. A sequence in A is a function a : Z+ → A. We write an to
mean a(n), and we write {an}∞n=1, or simply {an}, to denote the function a. We
will primarily be interested in sequences of real numbers, that is, sequences in
R.

4. Limit Points of Sequences

Let {an}∞n=1 be a sequence of real numbers and let L ∈ R. We say that L is
a limit point of {an}∞n=1 if

∀ε > 0 ∃N ∈ Z+ 3 n ≥ N ⇒ |an − L| < ε.

In this case, we say that {an}∞n=1 converges to L.

Proposition 3. Let {an}∞n=1 be a sequence in R and let L1, L2 ∈ R. If {an}∞n=1

converges to L1 and to L2, then L1 = L2.

Proof. Suppose not, and set d = |L1 − L2|; then d is positive. Let ε = d
4 . Then

by definition of limit, there exist positive integers N1 and N2 such that n ≥ N1

implies that |an − L1| < ε, and n ≥ N2 implies that |an − L2| < ε.
Let N = max{N1, N2}. Then for n ≥ N ,

d = |L1 − L2|
= |L1 − an + an − L2|
= |L1 − an|+ |an − L2| by the Triangle Inequality

= |an − L1|+ |an − L2|
≤ ε + ε

=
d

2
.

This is a contradiction; thus L1 = L2. �

Thus limits are unique when they exist, justifying the article the limit instead
of “a limit point”. We write L = limn→∞ an to say that {an}∞n=1 converges to
L.

If a sequence has a limit, we say that it is convergent; otherwise it is divergent.

Example 1. Show that limn→∞
1
n = 0.

Proof. Let ε > 0. By the Archimedean Principle, there exists N ∈ N such that
N > 1

ε . This gives 1
N < ε. Note that if n ≥ N , then 1 ≥ N

n , and 1
N ≥ 1

n . Thus
for n ≥ N we have

| 1
n
− 0| = 1

n
≤ 1

N
< ε.

This proves that limn→∞
1
n = 0. �

Let {an}∞n=1 be a sequence of real numbers. The image of {an}∞n=1 is the
image of the sequence as a function, that is, it is the set

{an | n ∈ Z+}.
Note that there is much more information in a sequence than in its image; for
example, the sequences {1+(−1)n}∞n=1 and {0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, . . . }
have the same image; the common image is {0, 2}, a set containing two elements.
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5. Bounded Sequences

We say that {an}∞n=1 is bounded above if there exists a ∈ R such that a ≥ an

for every n ∈ Z+.
We say that {an}∞n=1 is bounded below if there exists b ∈ R such that b ≤ an

for every n ∈ Z+.
We say that {an}∞n=1 is bounded if it is both bounded above and bounded

below. Equivalently, {an}∞n=1 is bounded if there exists M > 0 such that an ∈
[−M,M ] for every n ∈ Z+.

Proposition 4. Every convergent sequence is bounded.

Proof. Let {an}∞n=1 be a convergent sequence with limit L. Let N be so large
that for n ≥ N we have |an − L| < 1. And |L| to both sides of this inequality
and apply the triangle inequality to get, for every n ≥ N ,

|an| ≤ |an − L|+ |L| < 1 + |L|.
There are only finitely many terms of the sequence between a1 and aN−1; set

M = max{|a1|, |a2|, . . . , |aN−1|, 1 + |L|}.
Then M ≥ an for every n ∈ Z+, so {an}∞n=1 is bounded. �
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